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Abstract

A volume integral equation method is presented for solving Schrödinger’s equation for three-dimensional quantum
structures. The method is applicable to problems with arbitrary geometry and potential distribution, with unknowns
required only in the part of the computational domain for which the potential is different from the background. Two dif-
ferent Green’s functions are investigated based on different choices of the background medium. It is demonstrated that one
of these choices is particularly advantageous in that it significantly reduces the storage and computational complexity.
Solving the volume integral equation directly involves O(N2) complexity. In this paper, the volume integral equation is
solved efficiently via a multi-level fast multipole method (MLFMM) implementation, requiring O(N logN) memory and
computational cost. We demonstrate the effectiveness of this method for rectangular and spherical quantum wells, and
the quantum harmonic oscillator, and present preliminary results of interest for multi-atom quantum phenomena.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The efficient solution of Schrödinger’s equation is an important problem in quantum nanodevice simula-
tions. The currently available methods for solving this problem can be classified into two categories: analytical
methods [1–3] and numerical methods [4–10]. Analytical methods are usually only suitable for specialized
problems, with numerical methods required for most complex structures. Some of the numerical methods that
have been used widely in nanodevice simulations are variational methods [4], Green’s function methods [5],
finite-element methods [6], finite-difference methods [7,8], and Fourier series methods [9].
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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The pseudospectral method [10] has also been applied in quantum well simulations. Compared with the finite-
difference and finite-element methods, the pseudospectral method yields solutions of higher accuracy (often, spec-

tral accuracy) while requiring fewer unknowns, significantly reducing memory requirements and computational
costs. However, the pseudospectral method is only suitable for problems on simple domains with smooth or reg-
ular geometry. While the method can also be applied to problems with discontinuous/singular potentials, if the
spectral convergence of the numerical solution is to be retained, appropriate modifications are necessary (such as
a ‘multi-domain’ formulation [10]). Unfortunately, this increases the complexity of the resulting scheme.

In this paper, we present a volume integral equation method for solving Schrödinger’s equation for three-
dimensional (3D) quantum structures. The method was first used in electromagnetic (EM) scattering problems
[11–13]. An important advantage of this method is that unknowns are used only in the part of the computa-
tional domain for which the potential is different from the background. The volume integral equation method
utilizes the Green’s function to obtain an integral representation of Schrödinger’s equation. The resulting dis-
cretization can be solved efficiently by using the fast multipole method (FMM)1 [14–16], so that, as the prob-
lem size increases, the memory requirements and computational complexity of the method increase only as
O(N3/2) (the details of this can be found in [16,17]); by using a multi-level fast multipole method (MLFMM)
[16–19], this cost scales as O(N logN).2 In the volume integral equation method, different choices of the back-
ground medium imply use of different Green’s functions. We demonstrate that careful selection of the back-
ground Green’s function may significantly simplify the storage and computational complexity.

The remainder of the paper is organized as follows. In Section 2 we describe the volume integral equation
method. With different choices of background, two different Green’s functions are induced in the integral
equation, one of which is particularly well suited for solving Schrödinger’s equation. The details of FMM
and MLFMM with this Green’s function are discussed in Section 3. In Section 4 the method is applied to rect-
angular and spherical quantum wells, and the quantum harmonic oscillator, and it is also employed for a sim-
plified investigation of multiple atoms. Conclusions are drawn in Section 5.
2. Volume integral method

The normalized time-independent 3D Schrödinger’s equation may be expressed as
1 No
discuss

2 Fo
of inte
the str
�r2wðrÞ þ V TðrÞwðrÞ ¼ EwðrÞ; r 2 R3; ð1Þ

where r represents the spatial position vector, w denotes the wave function, VT denotes the total potential, and
E is the energy state. Let Vb represent the background potential (here assumed a constant) and let Vc(r) rep-
resent the potential contrast relative to Vb. Then
V TðrÞ ¼ V b þ V cðrÞ; ð2Þ
and (1) may be rewritten as
r2wðrÞ þ ½E � V b�wðrÞ ¼ V cðrÞwðrÞ: ð3Þ
We first consider the Green’s function G0(r, r 0) defined via
r2G0ðr; r0Þ þ k2G0ðr; r0Þ ¼ �dðr� r0Þ; ð4Þ
where k2 = E � Vb, and we assume Vb < E in order to make k real. The Green’s function is
G0ðr; r0Þ ¼
e�jkjr�r0 j

4pjr� r0j : ð5Þ
This Green’s function is widely applied in electromagnetic problems [12–20], and we have the solution of (3)
te that the FMM of [14] by Greengard and Rokhlin is a multi-level algorithm for the static case, and is different from the FMM
ed in this paper.

r the low-frequency and static problems, it is well known that the FMM is an O(N) algorithm [12,14,25,26]. The quantum problem
rest here, however, is a high-frequency dynamic case (even for the lowest energy states, the wavelength is comparable to the size of
ucture), for the efficient solution of which we describe an O(N logN) MLFMM.
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wðrÞ ¼ �
Z

C

e�jkjr�r0 j
4pjr� r0j V cðr0Þwðr0Þ dr0; ð6Þ
in which C represents the domain for which Vc(r) 6¼ 0, i.e. the foreground. The expression in (6) represents the
‘volume integral equation’ form of Schrödinger’s equation (3). In (4) we assumed Vb < E such that k is real
and the Green’s function is oscillatory. In fact, we can choose Vb arbitrarily. For some problems, such as mod-
eling quantum-atomic phenomena, the potential is everywhere negative except at the atom centers. For those
cases if we choose Vb as zero, then E � Vb < 0. For such problems we consider an exponentially decaying
Green’s function Gd(r, r 0) satisfying
r2Gdðr; r0Þ � k2Gdðr; r0Þ ¼ �dðr� r0Þ; ð7Þ

and the Green’s function is
Gdðr; r0Þ ¼
e�kjr�r0 j

4pjr� r0j : ð8Þ
We have the integral equation solution of Schrödinger’s equation for the decaying Green’s function as
wðrÞ ¼ �
Z

C

e�kjr�r0 j

4pjr� r0j V cðr0Þwðr0Þ dr0: ð9Þ
Both (6) and (9) are solutions of (3), and the form that applies depends on the selected background, i.e., on
whether E � Vb is larger or smaller than zero. In Section 4, we show that the solution of (9) with Gd(r, r 0) can
be performed much more efficiently than the solution of (6) with G0(r, r 0). Therefore, in the following discus-
sion, it is assumed that the form in (9) is chosen.

Using the concept employed within the method of moments (MoM) [20], we expand the wave function w as
wðrÞ �
XN

n¼1

an/nðrÞ; ð10Þ
where /n(r) are the known basis functions and an denote the unknown expansion coefficients. Substituting this
expansion into (9), we obtain
XN

n¼1

an/nðrÞ ¼ �
XN

n¼1

an

Z
C

e�kjr�r0 j

4pjr� r0j V cðr0Þ/nðr0Þ dr0: ð11Þ
Converting (11) into a matrix equation via the Galerkin method, we have
XN

n¼1

an

Z
C

/nðrÞ/mðrÞ dr ¼ �
XN

n¼1

an

Z
C

dr

Z
C

e�kjr�r0 j

4pjr� r0j V cðr0Þ/nðr0Þ/mðrÞ dr0; ð12Þ
which may be expressed in matrix form as
Ba ¼ AðkÞa; ð13Þ

where the A(k) has elements
AðkÞm;n ¼ �
Z

C
dr

Z
C

e�kjr�r0 j

4pjr� r0j V cðr0Þ/nðr0Þ/mðrÞ dr0; m; n ¼ 1; . . . ;N ; ð14aÞ
the matrix B has elements
Bm;n ¼
Z

C
/nðrÞ/mðrÞ dr; ð14bÞ
and a is a vector comprising the unknown expansion coefficients. The expression in (13) is the volume integral
discretization of the 3D Schrödinger’s equation, using the integral equation form (9). The task now is to solve
(13) for k and a, which can be done via eigenvalue shooting using a combination of Newton’s method and
inverse iterations [21]. Once k and a have been determined, the energy states and wavefunctions are known.
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The effort involved in solving the volume integral discretization (13) is as follows. If the basis functions used
in the discretization procedure are sub-domain [20], then the matrix B is banded. For example, if a pulse basis
is used, B is a diagonal matrix; it can then be absorbed into the vector a. If the structure is meshed with tet-
rahedrons, and scalar RWG [22] basis functions are employed, then the maximum number of non-zero ele-
ments in each row of B is seven. The main bottleneck is the dense matrix A. Directly storing this matrix
requires O(N2) memory; the direct calculation of the matrix-vector products on the right-hand side of (13)
is also O(N2). The fast multipole method (FMM) and multi-level fast multipole method (MLFMM) have been
widely applied with the Green’s function G0(r, r 0) to decrease the memory and computational requirements for
solving such integral equations [12–19]. Both the memory and the computational cost for FMM are of
O(N1.5), and they are O(N log N) for MLFMM.

The exponentially decaying Green’s function Gd(r, r 0) has important advantages over the Green’s function
G0(r, r 0) used widely in electromagnetics. First, while G0(r, r 0) is complex, Gd(r, r 0) is real, and therefore the
memory required when using Gd(r, r 0) is only half the memory needed for G0 (r, r 0). Moreover, computations
are often much faster with real numbers than with complex numbers. Therefore, using Gd(r, r 0) yields signif-
icant savings in both memory and computation. In addition, since Gd(r, r 0) is exponentially decaying the inter-
action matrix is strictly diagonally dominant, which as demonstrated below greatly improves the convergence
rate of the iterative solver for (13).

3. FMM and MLFMM for the volume integral method with the decaying Green’s function Gd

In this section, we turn to the FMM and MLFMM for the volume integral method with the decaying
Green’s function Gd. To our knowledge this work represents the first time FMM/MLFMM have been applied
with Gd, so details are provided. We discuss, in particular, the advantages afforded when Gd is used as opposed
to G0.

Two identities constitute the foundation of FMM. The first is the expansion of the Green’s function using
Gegenbauer’s addition theorem
Gdðr; r0Þ ¼
e�kR

4pR
¼ e�kjDþdj

4pjDþ dj ¼ �
k

4p

X1
l¼0

ð�1Þlð2lþ 1ÞjlðjkdÞhð1Þl ðjkDÞP lðd̂ � D̂Þ; ð15Þ
where jl( ) is the first kind spherical Bessel function, hð1Þl ð Þ is the first kind spherical Hankel function, and Pl( )
is the Legendre polynomial. As shown in Fig. 1, R = |r � r 0| = |D + d|, r and r 0 are the observation and source
points, rm and r0m are the corresponding group centers, D ¼ rm � r0m is a vector between the two group centers,
d ¼ ðr0m � r0Þ þ ðr� rmÞ and d < D.

The second identity used in the FMM is the expansion of jlðjkdÞP lðd̂ � D̂Þ as an integration of propagating
plane waves:
jlðjkdÞP lðd̂ � D̂Þ ¼
1

4pil

Z
e�k�dP lðk̂ � D̂Þ d2k̂; ð16Þ
where k̂ are unit vectors on a unit sphere. Substitution of (16) into (15) yields
Gdðr; r0Þ ¼
�k

ð4pÞ2
Z

d2k̂e�k�d
X1
l¼0

ðiÞlð2lþ 1Þhð1Þl ðjkDÞP lðk̂ � D̂Þ: ð17Þ
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Fig. 1. Geometrical relationships between the source and observation points.
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The summation on the right-hand side of (17) is a function of kD and k̂ � D̂. It is denoted by the translation
operator
Fig. 2.
lines a
T ðkD; k̂ � D̂Þ ¼
X1
l¼0

ðiÞlð2lþ 1Þhð1Þl ðjkDÞP lðk̂ � D̂Þ: ð18Þ
In numerical computation the series in (18) must be truncated. Let TL( ) denote the truncated series with the
first L + 1 terms, we have
T LðkD; k̂ � D̂Þ ¼
XL

l¼0

ðiÞlð2lþ 1Þhð1Þl ðjkDÞP lðk̂ � D̂Þ: ð19Þ
The benefit of FMM is that the translation operators TL( ) between groups can be pre-computed before the
iterative solution, and the interactions between the elements in the two groups can be computed once through
the translation operator [16,17].

The error in the truncated Green’s function is
e ¼
X1

l¼Lþ1

ð�1Þlð2lþ 1ÞjlðjkdÞhð1Þl ðjkDÞP lðd̂ � D̂Þ
�����

����� ð20Þ
and the error is maximum when D and d are collinear [24]. Applying the large argument approximation of the
spherical Hankel function, the error can be approximated as
e � e�kD

D

X1
l¼Lþ1

ilð2lþ 1ÞjlðjkdÞ
�����

����� 6 e�kD

D
ð2Lþ 3ÞjjLþ1ðjkdÞj 6 e�kD

D
ð2Lþ 3ÞjLþ1ðkdÞ: ð21Þ
Compared with the error given in (3.41) of [12] for the oscillatory Green’s function G0(r, r 0), the error of the
decaying Green’s function Gd(r, r 0) has an extra factor e�kD. For the problems of interest here, kD is often
much larger than one, and the expansion using the Green’s function Gd(r, r 0) has much smaller error than using
G0(r, r 0). Fig. 2 shows the comparison of the errors in the translation operator using different Green’s functions
for different L.

Following the same derivation as in Chew et al. [12], the relationship between L and the error e may be
expressed as
Comparison of the errors in the translation operator using different Green’s functions for different L. The solid lines and dotted
re for G0(r, r 0) and Gd(r, r 0), respectively. In this figure d is fixed at 0.1 and k is fixed at 2p.



Fig. 3. Comparison of the errors in the plane wave expansion using different Green’s functions.
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L � kd þ 1:8d2=3
0 ðkdÞ2=3

; ð22Þ

where d0 ¼ log e�kD

D � 1
e

� �
. In (22), L can be negative when kD is very large, implying that we can just neglect the

interaction between these two groups because Gd(r, r 0) is exponential decaying.
In the implementation of the plane wave expansion (16), a Gauss–Legendre quadrature [16] is applied. The

error induced by this approximation for the decaying Green’s function Gd(r, r 0) is almost always less than that
for the oscillatory Green’s function G0(r, r 0). Fig. 3 is a sample for the same number of discrete k̂. The Green’s
function Gd(r, r 0) has less relative error for large kd. In this case, the number of k̂ used is 200, and the order of
the first kind spherical Bessel function is five. The expansion using Gd(r, r 0) is generally more accurate, but
around the null they are similar. Therefore, we still use the same criterion to set the number of plane waves
as that of G0(r, r 0) [16] in order to guarantee solution accuracy.

Using the expansion as described above, the interaction matrix (14a) can be rewritten as
AðkÞn;n0 �
k

ð4pÞ2
Z

C
dr/nðrÞ

Z
C

/n0 ðr0ÞV cðr0Þ dr0
Z

d2k̂e�k�dT LðkD; k̂ � D̂Þ: ð23Þ
Let rm0 be the center of the group containing the source element n 0, rm be the center of the group center con-
taining the observation element n, d ¼ ðrm0 � r0Þ þ ðr� rmÞ, and D ¼ rm � rm0 . The expression in (23) may now
be rewritten as
AðkÞn;n0 �
k

ð4pÞ2
Z

d2k̂

Z
C

dre�k�ðr�rmÞ/nðrÞ
Z

C
ek�ðr0�rm0 Þ/n0 ðr0ÞV cðr0Þ dr0T LðkD; k̂ � D̂Þ: ð24Þ
The remaining details of the implementation of FMM and MLFMM with Gd are identical to those of the G0

case. For brevity, we do not include them here but rather refer the reader to the literature [12–19].

4. Simulation results

The advantages of the volume integral equation method using the exponentially decaying Green’s function
are demonstrated through simulation of a 3D rectangular quantum well, a 3D spherical quantum well, and a
3D quantum harmonic oscillator. The agreement between the numerical and the analytical solutions is shown.
For the harmonic oscillator problem, we compare the solution from the volume integral equation method with
that from the pseudospectral method using Chebyshev polynomials as basis functions [27]. Finally, the
method is applied to a problem of interest for multi-atom quantum problems. Because we used the normalized



Fig. 4. First wave function in the x-direction obtained from the volume integral method for the 3D rectangular quantum well problem, for
two different Green’s functions: G0(r, r 0) and Gd(r, r 0). When using G0(r, r 0), the outside region is meshed with 4250 unknowns, and when
using Gd(r, r 0), the inside region is meshed with only 250 unknowns.
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time-independent 3D Schrödinger’s equation in (1), the parameters in the following simulations are
dimensionless.

4.1. Rectangular quantum well

For the rectangular quantum well, the potential function is
V ðx; y; zÞ ¼
200p; outside the cube ½�0:2; 0:2� � ½�0:1; 0:1� � ½�0:1; 0:1�;
0; otherwise;

�
for ðx; y; zÞ 2 R3: ð25Þ
The background potential may be chosen as Vb = 0, so that unknowns are only needed outside the well, and
the infinite outside region is regarded as foreground and therefore must be truncated. The domain is truncated
to the cube [�0.4,0.4] · [�0.3, 0.3] · [�0.3,0.3] and uniformly meshed with 4250 small cubes. Because
E � Vb > 0, the oscillatory Green’s function G0(r, r 0) is used here. The solid line in Fig. 4 shows the first wave
function in the x direction for this rectangular quantum well.

Alternatively, we may choose Vb = 200p, so that the nonzero region is only inside the well. Therefore, we
only need to mesh the inside of the well, and no domain truncation is required. Because E � Vb < 0, the decay-
ing Green’s function Gd(r, r 0) is used. With this choice, since the region inside the well is relatively small, the
number of unknowns required is small; 250 small cubes are meshed inside the well with the same step size as
that for meshing the outside. The dashed line in Fig. 4 is the result of the first wave function using Gd(r, r 0). The
results using G0(r, r 0) and Gd(r, r 0) agree with each other well. The relative difference is 0.3%, which is defined as
e ¼
R R R

w0ðx; y; zÞ � wdðx; y; zÞ½ �2 dx dy dzR R R
w2

0ðx; y; zÞ dx dy dz

" #1=2

; ð26Þ
where w0(x,y,z) and wd(x,y,z) are the wave functions computed by using G0(r, r 0) and Gd(r, r 0), respectively.
UsingthedecayingGreen’s functionGd(r, r 0)has important advantages, especiallywhen the foreground is small

compared with the background. In addition to the advantages in memory requirement and CPU-time, it needs
much less unknowns for this case: 250 unknowns vs. 4250 unknowns when using G0(r, r 0). This, coupled with the
accelerated convergence of the GMRES iterative solver [23], greatly improves the performance of the method.

In order to compare the convergence speed of the GMRES iterative solver, a similar numbers of unknowns
are used for the different Green’s functions. Fig. 5 shows a comparison on the convergence speed using



Fig. 5. Comparison of the convergence of GMRES iterations using different Green’s functions G0(r,r 0) and Gd(r, r 0). When using G0(r, r 0),
the outside region of quantum well is meshed with 2125 unknowns, and when using Gd(r, r 0), the inside region is meshed with 2000
unknowns.
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different Green’s functions for the first mode of the same quantum problem described in (25). When using
G0(r, r 0) we mesh the outside region with 2125 unknowns, and when using Gd(r,r 0) we mesh the inside region
with 2000 unknowns. The two unknown numbers are somewhat different, but this does not affect the compar-
ison significantly. The convergence speed is much faster when using Gd(r, r 0) due to the well-conditioned prop-
erties of the associated matrix equation.

The above results were obtained using MoM, whose memory requirement and computational cost grows as
O(N2). Since the new Green’s function Gd(r, r 0) has important advantages over G0(r,r 0), all of the following
results (unless explicitly stated otherwise) are computed using Gd(r, r 0).

The volume integral method is next implemented using MLFMM, and a comparison between MoM and
MLFMM shown in Fig. 6. The inner region of the well is meshed uniformly with 2000 cubes. The MLFMM
Fig. 6. Comparison of the first wave function of the rectangular quantum well using MoM and MLFMM. The inner region of the well is
meshed uniformly with 2000 cubes.
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result agrees very well with that of MoM – the relative mean square error (MSE) for MLFMM is 0.06% with
reference to MoM results.

The total memory required and computational cost (per GMRES iteration) of the MLFMM result is much
less than direct multiplication, as shown in Figs. 7 and 8, where the problem size is increased keeping the
sampling density fixed, so that the number of unknowns N increases. The costs of the direct solver (MoM)
scale as O(N2), where as the costs of the MLFMM increase as O(N logN), which, for the ranges of unknowns
Fig. 7. Memory required in the MoM and MLFMM volume integral solutions of the 3D rectangular quantum well problem. The number
of MLFMM levels is indicated as a function of N.

Fig. 8. Computational cost for the MoM and MLFMM volume integral solutions of the 3D rectangular quantum well problem.



Fig. 9. First wave function in the x-direction obtained from the volume integral method for the 3D spherical quantum well problem using
different Green’s functions. When using G0(r,r 0), the domain 0.3 6 r 6 0.5 is meshed with 3312 unknowns, and when using Gd(r, r 0), the
domain r 6 0.3 is meshed with 4224 unknowns.
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considered here, is almost only a linear rate of increase. In Figs. 7 and 8, the curves of MLFMM are not
exactly linear; this is because different levels are used, as shown in the figures. Overall, MLFMM is imple-
mented with a cost on the order of O(N logN).

4.2. Spherical quantum well

We now consider a spherical quantum well with potential
V ðx; y; zÞ ¼ 200p;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
> 0:3

0; otherwise;

(
for ðx; y; zÞ 2 R3: ð27Þ
In the volume integral solution of this problem, we first choose the background potential as Vb = 0, so that
unknowns are needed only outside the well (because Vc is non-zero only in that region), and the Green’s func-
tion G0(r, r 0) is used. The domain is truncated to a sphere with radius r = 0.5. The domain 0.3 6 r 6 0.5 is
meshed with 3312 small cubes. The dotted lines of Figs. 9 and 10 are the first and second symmetric wave func-
tions along the x-direction using G0(r, r 0). Compared with the analytical results which are shown as a solid line
in Figs. 9 and 10, the relative mean-square-error (MSE) of the wave functions are about �40.4 and �35.7 dB
for both modes, respectively.

We now choose the background potential as Vb = 200p, with unknowns needed only inside the well. As
E � Vb < 0, we use the decaying Green’s function Gd(r, r 0). The dashed lines in Figs. 9 and 10 show the first
and second symmetric wave functions in x-direction of this spherical quantum well with Gd(r, r 0), respectively,
using N = 4224 unknowns. The relative MSE in the wave functions are about �42 and �37 dB for both
modes, respectively (with the analytical solution as reference).

The convergence speeds using the different Green’s functions for the first mode of this spherical quantum
problem are compared in Fig. 11. We observe that the convergence speed is much faster when using Gd(r, r 0),
due to the well-conditioned properties of the associated matrix equation.

In order to avoid the errors brought by MLFMM expansions, the above comparisons were obtained using
MoM. In our test, the MLFMM using oscillatory Green’s function G0(r, r 0) was not accurate for computation
of the eigen states. This is because the interactions between the well-separated elements are still relatively large
and the contributions from these elements may cancel the contribution from the contributions from near ele-
ments, therefore very accurate expansions are needed in the MLFMM. By comparison the MLFMM with
Gd(r, r 0) was found to perform with high accuracy; this is because the interactions between the well-separated



Fig. 10. Second wave function in the x-direction obtained from the volume integral method for the 3D spherical quantum well problem
using different Green’s functions. When using G0(r, r 0), the domain 0.3 6 r 6 0.5 is meshed with 3312 unknowns, and when using Gd(r, r 0),
the domain r 6 0.3 is meshed with 4224 unknowns.

Fig. 11. Comparison of the convergence of GMRES iterations using Green’s function G0(r, r 0) and Gd(r,r 0). When using G0(r, r 0), the
domain 0.3 6 r 6 0.5 of the spherical quantum well is meshed with 3312 unknowns, and when using Gd(r,r 0), the domain r 6 0.3 is meshed
with 4224 unknowns.
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elements are very small compared to the near-interaction terms. The MLFMM result using Gd(r, r 0) and the
MoM result are almost identical and therefore not shown here.
4.3. Comparison with the Chebyshev pseudospectral method for the 3D quantum harmonic oscillator

For the quantum harmonic oscillator, the potential function is
V ðx; y; zÞ ¼ x2 þ y2 þ z2 for ðx; y; zÞ 2 R3: ð28Þ
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The analytical solution of this problem is well known, and the energy states are
Fig. 12
3D qu
Ean
nx;ny ;nz

¼ ð2nx þ 1Þ þ ð2ny þ 1Þ þ ð2nz þ 1Þ; ð29Þ
for nx,ny,nz = 0,1, . . . , with the corresponding separable wave functions give by
wan
nx;ny ;nz

ðx; y; zÞ ¼ exp � x2

2

� �
HnxðxÞ exp � y2

2

� �
Hny ðyÞ exp � z2

2

� �
HnzðzÞ; ð30Þ
where Hn denotes the Hermite polynomial of order n.
In both the volume integral equation method and the Chebyshev pseudospectral method, the domain was

truncated to the cube [�8,8] · [�8,8] · [�8,8]. In the volume integral method, simple pulse basis functions
were employed and the background was chosen as Vb = 0. Therefore, Ek � Vb > 0, and the Green’s function
G0(r, r 0) is used.

Fig. 12 plots the first wave function in the x-direction obtained from the Chebyshev pseudospectral and
volume integral methods, both using 4096 unknowns. For comparison, the analytical solution has also been
included in the same figure. We can see that the solution from the volume integral equation method agrees
very well with the analytical solution. The solution from the Chebyshev pseudospectral method, on the other
hand, is not as good. The main reason for this is twofold. Firstly, the Chebyshev pseudospectral method uti-
lizes a non-uniform gird with the density of the collocation positions being very low in the center of the
domain; but this is where the wave function primarily resides. This low resolution near the domain center lim-
its the accuracy of the Chebyshev pseudospectral method, whereas the volume integral equation method uti-
lizes a uniform grid and does not suffer from this problem. Secondly, the Chebyshev pseudospectral method
wastes unknowns, in that it unnecessarily uses too many grid points near the domain boundaries where the
wave function is nearly zero.

Fig. 13 shows the comparison of the first wave function in the x-direction obtained from the Chebyshev
pseudospectral and volume integral method using 8000 unknowns, with the analytical wave function. We
can see that the accuracy of the Chebyshev pseudospectral solution has improved significantly. But now
the solution from the volume integral method is almost indistinguishable from the analytic solution.

Fig. 14 shows the relative error in the first energy state obtained from the Chebyshev pseudospectral and
volume integral method, as a function of unknown number. We can see that both the methods yield spectrally
accurate solutions. For any given number of unknowns, the solution from the volume integral method is
clearly more accurate than that from the Chebyshev pseudospectral method.
. First wave function in the x-direction obtained from the Chebyshev pseudospectral and volume integral equation method for the
antum harmonic oscillator problem, using 4096 unknowns.



Fig. 13. First wave function in the x-direction obtained from the Chebyshev pseudospectral and volume integral equation method for the
3D quantum harmonic oscillator problem, using 8000 unknowns.

Fig. 14. Relative error in the first energy state of the 3D quantum harmonic oscillator problem obtained from the Chebyshev
pseudospectral and volume integral equation method with MLFMM, as a function of unknown number.
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4.4. Multi-atom case

The volume integral equation method is now used to investigate a simple rendering of a multi-atom quantum
problem. The simulation domain is [0,8.5] · [0,6.25] · [0,6.25] bohr. The centers of two carbon atoms are kept
at (3.125,3.125,3.125) and (5.375,3.125,3.125) bohr and the bond length of these two atoms is 2.25 bohr (about
1.2 Å). The domain is uniformly meshed with 21,250 cubes. Because the potential of a single atom is �Za

r (Za is
the valence), for the first several modes Ek � Vb < 0 is always valid. Hence, the integral method using the decay-
ing Green’s function Gd(r, r 0) with a 4-level MLFMM is applied to simulate this case. This simulation was run on
3.06 GHz Intel Xeon processor. The total RAM required is 273 Mbytes. In the solution of the eigen problem, it
takes three inverse iterations to achieve 10�3 relative error. In each inverse iteration, the GMRES linear solver
requires about 12 iterations to converge to 10�2. For each GMRES iteration 1.6 s are required.



Fig. 15. Wave functions obtained using volume integral equation method for a simple rendering of two carbon atoms. The simulation
domain is uniformly meshed with 21,250 cubes. (a) The first wave function; (b) the second wave function; (c) the third wave function.
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Fig. 15a shows the first wave functions (in the xy plane at z = 0). The results show that the electrons are
more likely to orbit around their own atom centers. Fig. 15b is the second wave function; a covalence is clearly
formed between the two atoms. Fig. 15c is the third wave function; a common orbital around these two atoms
is formed. All results show that the volume integral equation method using the decaying Green’s function can
be further applied to atomic simulations (with a more-realistic handling of the potential). Further studies are
undergoing in this direction.

5. Conclusion

A volume integral equation method has been developed for solving Schrödinger’s equation for 3D quantum
structures. The method is very flexible for problems with arbitrary geometry and potential distribution, and
has the important advantage of requiring unknowns only in the part of the computational domain where
the potential is different from the background. For problems in which the background potential occupies a
relatively large portion of the domain, the savings in the number of unknowns used are significant. Different
choices of background potential induce different Green’s functions. One of these, an exponentially decaying
Green’s function, is shown to have important advantages over the conventional oscillatory one. As the prob-
lem size increases, both the memory requirement and computational complexity of the volume integral equa-
tion method (using MLFMM) scale as O(N logN). In our numerical simulation results, the volume integral
equation method shows very accurate solutions.

For a given quantum problem, by suitable choice of the ‘background’ potential Vb, the integral-equation
can be formulated for solution using either the oscillatory Green’s function G0 (conventional) or the exponen-
tially decaying Green’s function Gd (new). Our experiments clearly indicate that the formulation involving Gd

has definitive advantages over that of G0. Also, the Green’s functions G0 and Gd depend on the potential func-
tion V(x,y,z) (through k and Vb).

As discussed in Section 1, most electromagnetic simulations performed with volume integral equations uti-
lize the oscillatory Green’s function G0. There are, however, problems in electromagnetics that would profit
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from use of the decaying Green’s function Gd utilized here. Specifically, there is a dual between the eigenmodes
of a quantum structure and the eigenmodes of a dielectric waveguide [20]. For such problems utilization of Gd

may provide computational advantages vis-à-vis G0, and as demonstrated here the MLFMM may be utilized
to further advance computational efficiency.
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